ENTRUST m

@1 PKI

Consortium

L MS: Faster key generation, lighter keys

Francisco Jose Vial-Prado

Post-Quantum Cryptography Conference
7-8 November, 2023, Amsterdam (NL)

i Fortanix

This talk

» Introduction to LMS (Also see Volker Krummel’s talk before lunch “Stateful
Hash-Based Signature Schemes”)

> Faster key generation (Remarks on SIMD versions of RFC8554 algorithms)
> Key size/signature speed trade-offs (Recalling the “treehash” algorithms)

This talk

» Introduction to LMS (Also see Volker Krummel’s talk before lunch “Stateful
Hash-Based Signature Schemes”)

> Faster key generation (Remarks on SIMD versions of RFC8554 algorithms)
> Key size/signature speed trade-offs (Recalling the “treehash” algorithms)

NOT This talk
State management, interoperability, export restrictions ...

LMS = LM-OTS/LMS/HSS...

LMS is a stateful hash-based signature scheme
» Key generation requires hashing
» Signing a message requires hashing

» Verifying a signature requires hashing

LMS = LM-OTS/LMS/HSS...

LMS is a stateful hash-based signature scheme
» Key generation requires hashing
» Signing a message requires hashing
» Verifying a signature requires hashing
Also...
» There is an internal state that MUST evolve upon signing (typically, one counter).

» LMS keys can be organized into HSS keys, augmenting capacity

LMS = LM-OTS/LMS/HSS...

x2M (< 2%) xk (<8)

LM-OTS key LMS key — HSS key

LMS = LM-OTS/LMS/HSS...

x2M (< 2%) xk (<8)

LM-OTS key LMS key — HSS key

(1 sig) (2" sigs) (2Mm++he sigs)

LMS = LM-OTS/LMS/HSS...

x2h (< 2% xk (£8
LM-OTS key (<27) LMS key (<8 HSS key
(1 sig) (2" sigs) (2Mm++he sigs)
Keygen:
34 x 255 + 34 hashes 2h+1 hashes k — 1 sigs

(use once) (maintain state) (rotate exhausted LMS keys)

LMS = LM-OTS/LMS/HSS...

LMS pubkey

Ciiiigeed e

LMS = LM-OTS/LMS/HSS...

1
LMS pubkey

Ciiiigeed e

Single leaf calculation

LM-OTS key

Single leaf calculation

LM-OTS key

Ty x[33] — h'(x[33]) = h*(x[33]) — --- — h*5(x[33])

SHA-256 in SIMD is Easy™

» SHA-256 operates on 32-bit words

P Only uses bit shifts, rotation, and wrapping addition

SHA-256 in SIMD is Easy™

» SHA-256 operates on 32-bit words
P Only uses bit shifts, rotation, and wrapping addition
» Can compute LANES hash values In One Go!

Single leaf calculation

LM-OTS key

9 SKag - mmmm oo T2

Single leaf calculation

OTS key

LM-
9 SKag - mmmm oo T2

-‘ X 255 + 34 calls

34
LANES X THREADS

-

LM-OTS signing

LM-OTS key

~

hl(X[l]) — h2(x[1]) s h255(X[1])

~

~

h2(x[33]) — -+ — K25 (x[33]) -

Signer reveals intermediate values
Verifier hashes again
(Message dependency ends here)

LMS signing

J/\/

A UN

8 11 12 13 14 15
/N 7N\ 7N\ 7N\ 7N\
16 17 18 19 20 21 22|23 24 25 26 27 28 29 30 31
SK%SK% SK3T SK‘QQ e SK‘31

m

Signer needs to provide {23, 10,4, 3}
Verifier hashes again

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

31

LMS root (RFC8554 app. C)

15 30
T 2 g
y \ N RN RN
6 13 18 21 25 28
2T TS /\ /\ /\ /\
1 2 4 5 8 9 [11[12] 16 177 1920 23 24 26 2

Get to the root with a stack of h — 1 hashes! (< 768 bytes)

LMS root (RFC8554 app. C)

// Generating an LMS Public Key from an LMS Private Key

for (i =0; i <2"h; i=1i+ 1) {
r =i + 27h;
temp = H(I || r || "D_LEAF" || OTS_PUB_HASH[il]) // Compute leaf
jo= 1
while (j % 2 == 1) {

r=(r - 1) / 2;

j =G -1/ 2

left = pop(data stack);

temp = H(I || r || "D_INTR" || left || temp) // Compute branch

push temp onto the data stack
X
public_key = pop(data stack)

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

29 30
5/ \26 27/ \28
N\ RN VRN VRN
9 10 11 12 21 22 23 24
/\ /\ /\ /\ /\ /\ /\ /\
7 %2 34 5 %6 78 1514 1516 17 18 19 20

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

29 30
5/ \26 27/ \28
N\ RN VRN VRN
9 10 11 12 21 22 23 24
/\ /\ /\ /\ /\ /\
72 3 4] 56 7 8 1514 1516 17 18 19 20

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

29 30
5/ \26 27/ \28
/\ AN N N
R JC @R KM
17 2 3 4||5 6 7 8| 1314 1516 17 18 19 20

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

29 30
/5/ T o g
RN RN

| 9 10 11 12| 21 22 23 24

s 75 ; 7 /N /\ /\ /\

1 2 3 4 586 7 8 1314 1516 17 18 19 20

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

29 30
/5/ \26 27/ \28
N VRN
| 9 10 11 12| 21 22 I 2
1 2 3 4 5 6 7 8 |1314 15 16| 17 18 19 20

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

29 30
/25/ T o g
RN RN
| 9 10 11 12| 21 22 23 24

12 3 4 5 6 7 8 [1314 15 16| [17 18 19 20

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

Get to level log(LANES) with a stack of (h — 1) x LANES SIMD calls

for (i = 0; i < 2°h; i =i + LANES) {
r =i + 27h;
temp = H(
I ||l r+ O..LANES || "D_LEAF" || OTS_PUB_HASH[O..LANES]
)
j = i / LANES;
while (j % == 1) {

r = (r - LANES) / 2;
j = (j - LANES) / 2;
left = pop(data stack);
temp = H(
I ||l r+ [0..LANES] [| "D_INTR" || left || temp[O..LANES]
)
}
push temp onto the data stack
}
// Compute levels [0..log(LANES)]

SIMD LMS KeyGen

x2M (< 22%9) xk (<8)

LM-OTS key LMS key - {HSS key

SIMD LMS KeyGen

x2M (< 22%) xk (<8)

LM-OTS key LMS key - {HSS key

34 COFE | - 2ht1 k—1 :
’VLANES'THREADS —‘ 255 + 34 ’7LANES-THREADS [THREADS —| sigs

LMS pubkey

2

22123

8 9
N /N
17 18 19 20 21

5 6 7

/1
2\ P
!

8 9 1 12 13 14 15
/N 7\ 7N\ 7N\ 7N\
16 17 18 19 20 21 |22|23| 24 25 26 27 28 29 30 31

Light, slow
Remember the state and seed

5 6 7

/1
!

AN N N
8 9 11 12 13 14 15
/N 7N\ /N 7N\ 7N\
16 17 18 19 20 21 |22(23| 24 25 26 27 28 29 30 31
Light, slow Heavy, fast

Remember the state and seed Remember everything

5 6 7

/1
!

AN N N
8 9 11 12 13 14 15
7N 7N\ 7\ 7N\ 7N\
16 17 18 19 20 21 |22|23| 24 25 26 27 28 29 30 31
Light, slow Heavy, fast
Remember the state and seed Remember everything

Everything = 21 x 32 bytes (< 2.14 GB)

Node lifetime

(leftmost leaf)

(left child of root)
(right child of root)

Node lifetime

life(h,0) = [0,2) (leftmost leaf)
life(h,?2) = [2,4)

life(h—1,0) = [0,4)

life(1,0) = [0,2") (left child of root)
life(1,1) = [0,2") (right child of root)

life(l,i) = [zh—'+1 li/2], 2L (i + 1) /2])

Atlevel | € {1,... ,h}, nodei € {0,...,2' — 1} lives during 2"~'*1 — 1 signatures

Small-Memory LM Schemes

Small-Memory LM Schemes

N'/2 algorithm

Remember top h/2 levels entirely. On level / > h/2, remember nodes {0, ..., 2/~"/2},
Remember leaves {0, ...,2"2 + h/2}.

Small-Memory LM Schemes

N'/2 algorithm

Remember top h/2 levels entirely. On level / > h/2, remember nodes {0, ..., 2/~"/2},
Remember leaves {0, ...,2"2 + h/2}.

N
w

Small-Memory LM Schemes

Slide windows after signing

At signature k, compute one leaf and upper
branches as possible. Forget leaves left of
L := k —2"/% — h/2 and nodes left of L /2",

Small-Memory LM Schemes

Slide windows after signing

At signature k, compute one leaf and upper
branches as possible. Forget leaves left of
L := k —2"/% — h/2 and nodes left of L /2",

State
“State” = counter + cached nodes.

2.14 GB — 1 MB for h = 25 and SHA-256

All together!

SHA-256 in SIMD is easy!

KeyGen
» Use SIMD/multithreading to compute leaves
> Use SIMD/multithreading to get to the root faster
» Remember node windows according to N'/2 algorithm

All together!

SHA-256 in SIMD is easy!

KeyGen
» Use SIMD/multithreading to compute leaves
> Use SIMD/multithreading to get to the root faster
» Remember node windows according to N'/2 algorithm

Sign
> Use SIMD/multithreading to compute one leaf ([34/(L - T)] - 255 + 34 calls)
» Compute at most h/2 branches
» Forget nodes left nodes past their lifetime
P> Release signature AFTER

Thank you!

seed

L MS: Faster key generation, lighter keys

Francisco Jose Vial-Prado

Post-Quantum Cryptography Conference
7-8 November, 2023, Amsterdam (NL)

i Fortanix

ENTRUST m

SHIELD

ili Fortanix: KEYFACTOR N NOREG
THALES ‘d-trust.

I@I I K I R >ntion ascer’r?a @%&ﬁﬁzﬁlﬂsm

Consortium

	Slide 195
	
	
	Slide 118

