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This talk

» Introduction to LMS (Also see Volker Krummel’s talk before lunch “Stateful
Hash-Based Signature Schemes”)

> Faster key generation (Remarks on SIMD versions of RFC8554 algorithms)
> Key size/signature speed trade-offs (Recalling the “treehash” algorithms)
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NOT This talk
State management, interoperability, export restrictions ...
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» Key generation requires hashing
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LMS = LM-OTS/LMS/HSS...

LMS is a stateful hash-based signature scheme
» Key generation requires hashing
» Signing a message requires hashing
» Verifying a signature requires hashing
Also...
» There is an internal state that MUST evolve upon signing (typically, one counter).

» LMS keys can be organized into HSS keys, augmenting capacity



LMS = LM-OTS/LMS/HSS...

x2M (< 2%) xk (<8)

LM-OTS key LMS key — HSS key




LMS = LM-OTS/LMS/HSS...

x2M (< 2%) xk (<8)

LM-OTS key LMS key — HSS key

(1 sig) (2" sigs) (2Mm++he sigs)




LMS = LM-OTS/LMS/HSS...

x2h (< 2% xk (£8
LM-OTS key (<27) LMS key (<8 HSS key
(1 sig) (2" sigs) (2Mm++he sigs)
Keygen:
34 x 255 + 34 hashes 2h+1 hashes k — 1 sigs

(use once) (maintain state) (rotate exhausted LMS keys)
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1
LMS pubkey
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Single leaf calculation
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Single leaf calculation

LM-OTS key

Ty x[33] — h'(x[33]) = h*(x[33]) — --- — h*5(x[33])



SHA-256 in SIMD is Easy™

» SHA-256 operates on 32-bit words

P Only uses bit shifts, rotation, and wrapping addition



SHA-256 in SIMD is Easy™

» SHA-256 operates on 32-bit words
P Only uses bit shifts, rotation, and wrapping addition
» Can compute LANES hash values In One Go!
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Single leaf calculation

OTS key

LM-
9 SKag - mmmm oo T2

-‘ X 255 + 34 calls

34
LANES X THREADS

-



LM-OTS signing

LM-OTS key

~

hl(X[l]) — h2(x[1]) s h255(X[1])

~

~

h2(x[33]) — -+ — K25 (x[33]) -

Signer reveals intermediate values
Verifier hashes again
(Message dependency ends here)



LMS signing
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Signer needs to provide {23, 10,4, 3}
Verifier hashes again
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LMS root (RFC8554 app. C)

15 30
T 2 g
y \ N RN RN
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2T TS /\ /\ /\ /\
1 2 4 5 8 9 [11[12] 16 177 1920 23 24 26 2

Get to the root with a stack of h — 1 hashes! (< 768 bytes)



LMS root (RFC8554 app. C)

// Generating an LMS Public Key from an LMS Private Key

for (i =0; i <2"h; i=1i+ 1) {
r =i + 27h;
temp = H(I || r || "D_LEAF" || OTS_PUB_HASH[il]) // Compute leaf
jo= 1
while (j % 2 == 1) {

r=(r - 1) / 2;

j =G -1/ 2

left = pop(data stack);

temp = H(I || r || "D_INTR" || left || temp) // Compute branch

push temp onto the data stack
X
public_key = pop(data stack)



SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.
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Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.
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SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.
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SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.
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SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.
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SIMD LMS root (Lanes = 4)

Stack = vector of arrays of LANES nodes.

As soon as 2 x LANES neighbour nodes are available, hash them into LANES nodes.

Get to level log(LANES) with a stack of (h — 1) x LANES SIMD calls



for (i = 0; i < 2°h; i =i + LANES ) {
r =i + 27h;
temp = H(
I ||l r+ O..LANES || "D_LEAF" || OTS_PUB_HASH[O..LANES]
)
j = i / LANES;
while (j % == 1) {

r = (r - LANES) / 2;
j = (j - LANES) / 2;
left = pop(data stack);
temp = H(
I ||l r+ [0..LANES] [| "D_INTR" || left || temp[O..LANES]
)
}
push temp onto the data stack
}
// Compute levels [0..log(LANES)]
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SIMD LMS KeyGen

x2M (< 22%) xk (<8)

LM-OTS key LMS key - {HSS key

34 COFE | - 2ht1 k—1 :
’VLANES'THREADS —‘ 255 + 34 ’7LANES-THREADS [THREADS —| sigs



LMS pubkey
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5 6 7

/1
!

AN N N
8 9 11 12 13 14 15
7N 7N\ 7\ 7N\ 7N\
16 17 18 19 20 21 |22|23| 24 25 26 27 28 29 30 31
Light, slow Heavy, fast
Remember the state and seed Remember everything

Everything = 21 x 32 bytes (< 2.14 GB)



Node lifetime

(leftmost leaf)

(left child of root)
(right child of root)



Node lifetime

life(h,0) = [0,2) (leftmost leaf)
life(h,?2) = [2,4)

life(h—1,0) = [0,4)

life(1,0) = [0,2") (left child of root)
life(1,1) = [0,2") (right child of root)

life(l,i) = [zh—'+1 li/2], 2L (i + 1) /2] )

Atlevel | € {1,... ,h}, nodei € {0,...,2' — 1} lives during 2"~'*1 — 1 signatures
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Small-Memory LM Schemes

N'/2 algorithm

Remember top h/2 levels entirely. On level / > h/2, remember nodes {0, ..., 2/~"/2},
Remember leaves {0, ...,2"2 + h/2}.



Small-Memory LM Schemes

N'/2 algorithm

Remember top h/2 levels entirely. On level / > h/2, remember nodes {0, ..., 2/~"/2},
Remember leaves {0, ...,2"2 + h/2}.

N
w




Small-Memory LM Schemes

Slide windows after signing

At signature k, compute one leaf and upper
branches as possible. Forget leaves left of
L := k —2"/% — h/2 and nodes left of L /2",




Small-Memory LM Schemes

Slide windows after signing

At signature k, compute one leaf and upper
branches as possible. Forget leaves left of
L := k —2"/% — h/2 and nodes left of L /2",

State
“State” = counter + cached nodes.

2.14 GB — 1 MB for h = 25 and SHA-256



All together!

SHA-256 in SIMD is easy!

KeyGen
» Use SIMD/multithreading to compute leaves
> Use SIMD/multithreading to get to the root faster
» Remember node windows according to N'/2 algorithm



All together!

SHA-256 in SIMD is easy!

KeyGen
» Use SIMD/multithreading to compute leaves
> Use SIMD/multithreading to get to the root faster
» Remember node windows according to N'/2 algorithm

Sign
> Use SIMD/multithreading to compute one leaf ([34/(L - T)] - 255 + 34 calls)
» Compute at most h/2 branches
» Forget nodes left nodes past their lifetime
P> Release signature AFTER



Thank you!

seed
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