Post-Quantum

Cryptography Conference

HSM Advances Supporting quantum-safe PKI Automation

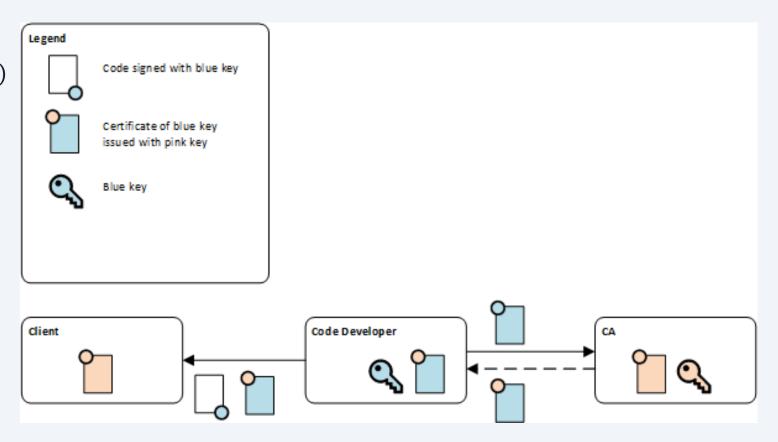
Olivier Couillard

Technical Product Manager at Crypto4A Technologies, Inc.

KEŸFACTOR

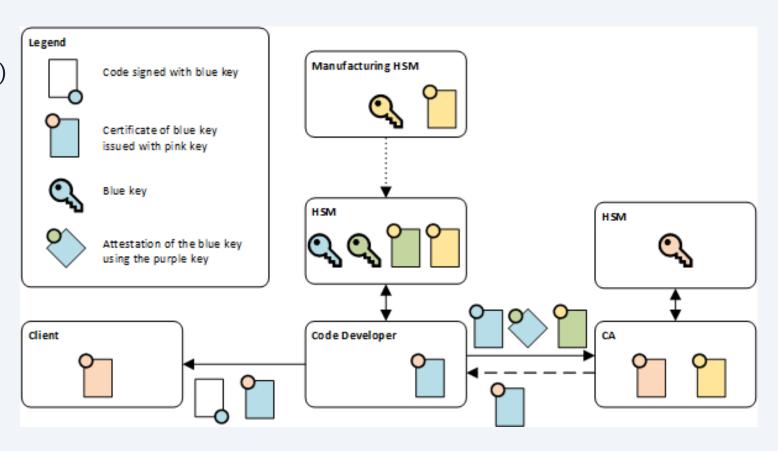
CRYPTO4A

October 28 - 30, 2025 - Kuala Lumpur, Malaysia


HSM Advances Supporting QuantumResistant PKI Automation

Agenda

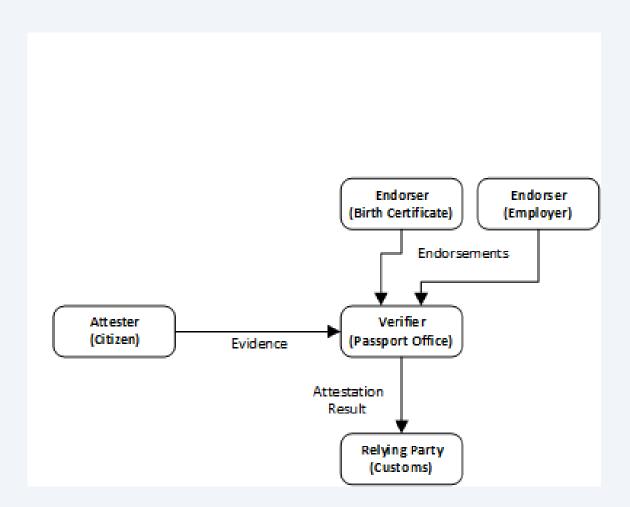
- Why is attestation useful?
 - Overview of a code signing example
- What is attestation?
 - RFC 9334
 - IETF's RATS for HSMs
 - Attestation format
- Why should attestation be quantum-resistant?
 - Algorithm considerations
- How can attestation be made quantum-resistant?
 - Roots of Trust (ROTs) and Trust Anchors (TAs)
- What are other use cases for attestation?
 - C2PA, audit logs, automatic HSM clustering


Code Signing Example

- Code developer has code signing key certified by a certificate authority (CA)
- Client inherently trusts CA
- Code is signed by code signing key and delivered to the client

Code Signing Example

- Code developer has code signing key certified by a certificate authority (CA)
- Client inherently trusts CA
- Code is signed by code signing key and delivered to the client
- Code signing key is in an HSM
- An attestation targeting the code signing key can be generated on demand
- The CA inherently trusts the root certificate in the attestation's certificate chain
- A manufacturing HSM provisions the attesting HSM with appropriate attestation keys


What is attestation?

• From RFC 9334:

In Remote ATtestation procedureS (RATS), one peer (the "Attester") produces believable information about itself ("Evidence") to enable a remote peer (the "Relying Party") to decide whether or not to consider that Attester a trustworthy peer. Remote attestation procedures are facilitated by an additional vital party (the "Verifier").

RFC 9334 – Passport Model

- Endorser: Various (contacts, birth certificate issuer, employer, etc.)
- Attester: Citizen
- Verifier: Passport-issuing agency
- Relying Party: Customs
- **Evidence:** Passport application
- Attestation Result: Passport

Challenges with HSMs

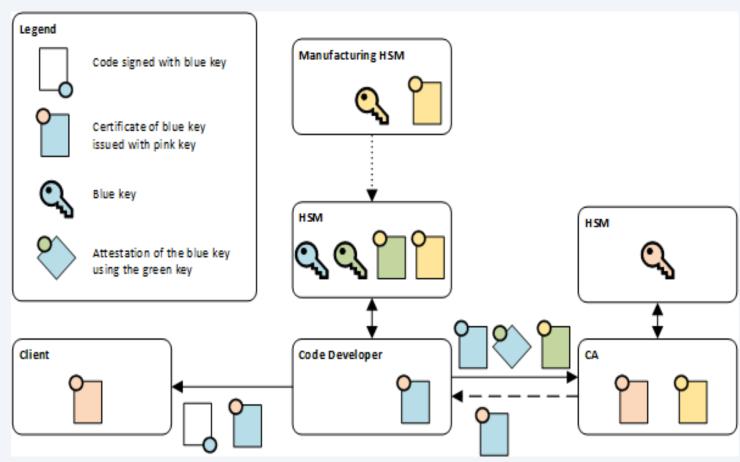
- 1. Limited encoding capabilities: Beyond ASN.1, there aren't many encoding capabilities typically found in HSMs.
- 2. Freshness of an attestation: The state of an HSM may change after an attestation of its state is made.
- 3. Privacy concerns: An HSM shouldn't divulge information that does not pertain to the process.

RATS – PKIX Key Attestation

- **1. ASN.1 Format**: Defining an ASN.1 format for the attestation to facilitate interoperability.
- 2. Attestation Request: A "Presenter" role is introduced. The Presenter must submit an attestation request to the HSM to specify the subset of evidence that is required.

Mapping:

- Endorser: Manufacturing HSM/FIPS Certification
- Attester: HSM protecting the attestation key
- Presenter: Code developer
- Verifier: CA
- Relying Party: Client
- Evidence: PKIX Evidence signed by attestation keys
- Attestation Result: X.509 certificate for the code signing key.


Format of an Attestation

- ASN.1 Encoding
- Evidence is the "to-besigned" (TBS) structure, similar to X.509
- Allows for multiple independent signatures
- Format is extensible and can include proprietary evidence

```
PkixEvidence ::= SEOUENCE
                           TbsPkixEvidence,
  tbs
 signatures
                           SEQUENCE SIZE (0..MAX) of SignatureBlock,
 intermediateCertificates [0] IMPLICIT SEQUENCE of Certificate OPTIONAL
                                -- As defined in RFC 5280
TbsPkixEvidence ::= SEQUENCE {
                   INTEGER,
  version
 reportedEntities SEQUENCE SIZE (1..MAX) OF ReportedEntity
ReportedEntity ::= SEQUENCE
  entityType
                     OBJECT IDENTIFIER,
 reportedAttributes SEQUENCE SIZE (1..MAX) OF ReportedAttribute
SignatureBlock ::= SEQUENCE {
                     SignerIdentifier,
 sid
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue
                     OCTET STRING
SignerIdentifier ::= SEQUENCE {
  kevId
                       [0] EXPLICIT OCTET STRING OPTIONAL,
 subjectKeyIdentifier [1] EXPLICIT SubjectPublicKeyInfo OPTIONAL,
                           -- As defined in RFC 5280
  certificate
                       [2] EXPLICIT Certificate OPTIONAL
                           -- As defined in RFC 5280
```

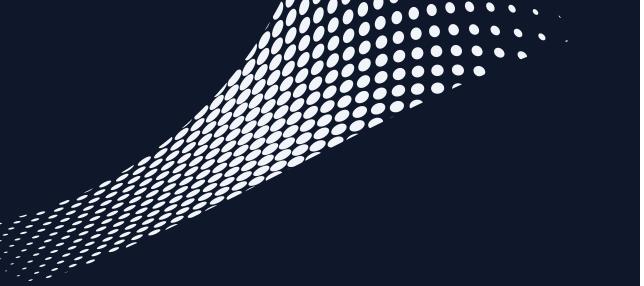
Why does attestation need to be quantum-resistant

- Security: An attacker will attack the weakest link. Any chain that is not quantum-resistant is susceptible to be attacked.
- Compliance: CA Browser forum is pushing the industry towards using HSMs to protect code signing keys, and thus there is a need for proving a key was generated in hardware.
- Crypto-Agility/Cost: Attestation is a tool provided by HSM vendor which relies on trust anchors. Non-quantumresistant attestation capabilities imply a future costly transition of hardware devices.

Algorithm Considerations

Algorithm	Signature Size	Public Key Size	Signature Verification Latency and Complexity	Confidence in Security	Key Management Complexity	Suitability
LMS	~2 kB	56 bytes	Low	Highest	High	 Small code size for verification logic Systems that are difficult to transition Key operators that have the resources to manage the state complexity
SLH-DSA	~40 kB	64 bytes	High	High	Low	 Medium code size for verification logic Systems that are difficult to transition Key operators that do not have the resources to manage the complexity
ML-DSA	~6 kB	~2.5 kB	Medium	Medium (relatively new)	Low	 Medium code size for verification logic Systems that can transition relatively easily Limited bandwidth or latency Key operators that do not have the resources to manage the complexity

Roots of Trust and Trust Anchors


- Root of Trust (RoT):
 - Typically, a hardware-based system meant to guarantee the security and the integrity of cryptographic material.
- Trust Anchor (TA):
 - Cryptographic asset (e.g., x509 root certificate, TA certificate, public key) inherently trusted.

Importance of quantum-resistant TAs

- Implementing and maintaining a RoT is not easy.
- TAs must be provisioned at manufacturing time and be immutable thereafter to be trustworthy.
- Deploying quantum-resistant TAs is akin to replacing a hardware-based infrastructure. It's costly and takes time.
- Crypto-agility is impossible if you can't rely on TAs to transition your systems.

Other Use Cases for Attestation

- Secure audit logs.
 - Implement "blockchain-style" append-only logs. Having the chain of logs allows one to verify the integrity from the start to the end.
 - Attestation is needed to confirm the head of the chain and associate it to a particular device.
- C2PA.
 - In a digital world where "real" images and AI-generated ones are becoming increasingly hard to distinguish, attestation can be used to prove the authenticity of a picture.
- Automatic Clustering.
 - Securely transferring keys to another HSM can either be achieved through a resource-intensive key ceremony, or it could rely on attestation to establish confidence in the transport key.

Questions?

• References:

- https://datatracker.ietf.org/doc/ /rfc9334/
- https://ietf-ratswg.github.io/keyattestation/draft-ietf-rats-pkixkey-attestation.html
- https://www.ietf.org/archive/id /draft-ietf-rats-referenceinteraction-models-14.html